If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7(2x2 + -9x) + 5x(9 + -2x + 3x2) = 0 Reorder the terms: 7(-9x + 2x2) + 5x(9 + -2x + 3x2) = 0 (-9x * 7 + 2x2 * 7) + 5x(9 + -2x + 3x2) = 0 (-63x + 14x2) + 5x(9 + -2x + 3x2) = 0 -63x + 14x2 + (9 * 5x + -2x * 5x + 3x2 * 5x) = 0 -63x + 14x2 + (45x + -10x2 + 15x3) = 0 Reorder the terms: -63x + 45x + 14x2 + -10x2 + 15x3 = 0 Combine like terms: -63x + 45x = -18x -18x + 14x2 + -10x2 + 15x3 = 0 Combine like terms: 14x2 + -10x2 = 4x2 -18x + 4x2 + 15x3 = 0 Solving -18x + 4x2 + 15x3 = 0 Solving for variable 'x'. Factor out the Greatest Common Factor (GCF), 'x'. x(-18 + 4x + 15x2) = 0Subproblem 1
Set the factor 'x' equal to zero and attempt to solve: Simplifying x = 0 Solving x = 0 Move all terms containing x to the left, all other terms to the right. Simplifying x = 0Subproblem 2
Set the factor '(-18 + 4x + 15x2)' equal to zero and attempt to solve: Simplifying -18 + 4x + 15x2 = 0 Solving -18 + 4x + 15x2 = 0 Begin completing the square. Divide all terms by 15 the coefficient of the squared term: Divide each side by '15'. -1.2 + 0.2666666667x + x2 = 0 Move the constant term to the right: Add '1.2' to each side of the equation. -1.2 + 0.2666666667x + 1.2 + x2 = 0 + 1.2 Reorder the terms: -1.2 + 1.2 + 0.2666666667x + x2 = 0 + 1.2 Combine like terms: -1.2 + 1.2 = 0.0 0.0 + 0.2666666667x + x2 = 0 + 1.2 0.2666666667x + x2 = 0 + 1.2 Combine like terms: 0 + 1.2 = 1.2 0.2666666667x + x2 = 1.2 The x term is 0.2666666667x. Take half its coefficient (0.1333333334). Square it (0.01777777780) and add it to both sides. Add '0.01777777780' to each side of the equation. 0.2666666667x + 0.01777777780 + x2 = 1.2 + 0.01777777780 Reorder the terms: 0.01777777780 + 0.2666666667x + x2 = 1.2 + 0.01777777780 Combine like terms: 1.2 + 0.01777777780 = 1.2177777778 0.01777777780 + 0.2666666667x + x2 = 1.2177777778 Factor a perfect square on the left side: (x + 0.1333333334)(x + 0.1333333334) = 1.2177777778 Calculate the square root of the right side: 1.10352969 Break this problem into two subproblems by setting (x + 0.1333333334) equal to 1.10352969 and -1.10352969.Subproblem 1
x + 0.1333333334 = 1.10352969 Simplifying x + 0.1333333334 = 1.10352969 Reorder the terms: 0.1333333334 + x = 1.10352969 Solving 0.1333333334 + x = 1.10352969 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.1333333334' to each side of the equation. 0.1333333334 + -0.1333333334 + x = 1.10352969 + -0.1333333334 Combine like terms: 0.1333333334 + -0.1333333334 = 0.0000000000 0.0000000000 + x = 1.10352969 + -0.1333333334 x = 1.10352969 + -0.1333333334 Combine like terms: 1.10352969 + -0.1333333334 = 0.9701963566 x = 0.9701963566 Simplifying x = 0.9701963566Subproblem 2
x + 0.1333333334 = -1.10352969 Simplifying x + 0.1333333334 = -1.10352969 Reorder the terms: 0.1333333334 + x = -1.10352969 Solving 0.1333333334 + x = -1.10352969 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.1333333334' to each side of the equation. 0.1333333334 + -0.1333333334 + x = -1.10352969 + -0.1333333334 Combine like terms: 0.1333333334 + -0.1333333334 = 0.0000000000 0.0000000000 + x = -1.10352969 + -0.1333333334 x = -1.10352969 + -0.1333333334 Combine like terms: -1.10352969 + -0.1333333334 = -1.2368630234 x = -1.2368630234 Simplifying x = -1.2368630234Solution
The solution to the problem is based on the solutions from the subproblems. x = {0.9701963566, -1.2368630234}Solution
x = {0, 0.9701963566, -1.2368630234}
| 6x+4=52 | | 27c^3+125=0 | | p^2-18p+56=0 | | 7*9x=0 | | 7*2x^2=0 | | x^3-3x^2-4x=0 | | .25x+x=152 | | 34+x=75 | | 3x+8-5x=3 | | 36a^2=1 | | 45x-10x^2+15x^3=0 | | 8x-5-5x+10=-18 | | 5x*3x^2=0 | | a^2+2a-35=0 | | -9x=27 | | 5x*-2x=0 | | a^2+29-35=0 | | 5x+20=70 | | 3(x+5)=30 | | 5x*9=0 | | 3(2+5)x=126 | | 3x-14=46 | | x^3-8x^2-269x+1140=0 | | 5y+3-7y=17 | | -6x+24=2x | | 5(6+6)x=-300 | | -4-3x=-2x-15 | | 2x^2+3x-7=0 | | 6-(2+3b)+4b=3(b-2)-4 | | 6c^2-5c-4= | | -3[2n+5]=-9 | | 2x+8=x+7 |